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Thermogravitational Field-Flow Fractionation: An Elution 
Thermogravitational Column 

J. CALVIN GIDDINGS, MICHEL MARTIN, 
and MARCUS N. MYERS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 84112 

Abstract 

The major operating characteristics of thermal field-flow fractionation 
(thermal FFF) and of thermogravitational columns are compared, and it is 
shown that the two approaches can be advantageously combined in a method we 
call thermogravitational FFF. The theory of this technique is developed, with 
primary attention given to a change in the velocity profile under different flow 
conditions and its effect on component retention, column efficiency, resolution, 
and selectivity. Experimental results are shown to be in good overall accord 
with theory. It is shown that the potential of thermogravitational FFF lies in 
the fractionation of low molecular weight polymers or of other species having 
weak thermal diffusion. 

INTRODUCTION 

Field-flow fractionation (FFF) is an analytical separation technique 
whose concept was developed in 1966 ( I ) .  In FFF, separation is achieved by 
means of a lateral external field or gradient which interacts with solutes 
and forces them into different average velocity regimes within a long flow 
channel (2).  Thermal field-flow fractionation (thermal FFF) is one of 
several subclasses of this technique. In thermal FFF the external "field" 
is a temperature gradient established in a channel confined between two 
parallel plates held at different temperatures. While other forms of FFF 
have been found applicable to a wide range of macromolecules and 
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612 GIDDINGS, MARTIN, AND MYERS 

particles, thermal FFF has been limited to the fractionation of synthetic 
polymers. The methodology and characteristics of thermal FFF in polymer 
studies have been described in earlier papers (3-9). 

Normally, the metal plates of a thermal FFF system are oriented 
horizontally. The hot plate is placed on top and the cold plate on the 
bottom in order to assure stability against thermal convection. The ther- 
mal diffusion phenomenon forces polymers toward one wall of the 
channel-normally the cold wall-where they soon form a steady-state 
layer due to the opposing motion of diffusion. At the high dilutions ap- 
proached by most analytical systems, the diffusion coefficient and the 
velocity induced by the thermal gradient can both be considered constant, 
and the resulting steady-state layer for each species is exponential in form 
(2). Increases in the temperature gradient compress the layer more tightly 
against the wall, increasing retention. In this way, gradient strength can 
be adjusted to yield optimum retention. 

The compression of solute layers is greatest for the highest molecular 
weight components of the polymer mixture. These components, ac- 
cordingly, accumulate preferentially in the near-stagnant fluid next to the 
wall where downstream motion is slight. Low molecular weight com- 
ponents, on the other hand, are subject to less compression because of 
weaker thermal diffusion effects and tend to form layers extending further 
into the high flow lamina of the channel where they are subject to a more 
rapid axial displacement. Fractionation therefore develops as a con- 
sequence of a coupled, field-flow induced, differential migration process 
along the channel. Theoretically, any number of components can be 
separated and eluted from a single thermal FFF channel. In practice, a 
programmed temperature gradient system is useful if one hopes to cover 
a wide range of molecular weights. Such a system has been applied suc- 
cessfully to polystyrene polymers ranging in molecular weight from 4000 
to 7,100,000 (7). 

The thermogravitational column is a much earlier device. This method, 
developed in 1938 by Clusius and Dickel (lo), has been applied primarily 
to binary isotope mixtures. Like thermal FFF, the thermogravitational 
column utilizes thermal diffusion as the basic displacement step for 
separation. However, in the thermogravitational system the column must 
be oriented vertically, or at least have a vertical component. The lateral 
temperature gradient then has a horizontal component and this results in 
a horizontal density gradient. The latter causes an upward flow at the hot 
wall and a corresponding downward flow at the cold wall of the channel. 
This free or natural convective flow, which is countercurrent in nature, 
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THERMOGRAVITATIONAL FIELD-FLOW FRACTIONATION 613 

occurs instead of the forced, unidirectional flow of FFF. The convective 
flow coupled with the thermal diffusion effect causes a cumulative separa- 
tion effect along the length of the channel and allows much better enrich- 
ment than a single thermal diffusion cell. The highly enriched components 
eventually appear at the bottom and the top of the column. Since the 
thermogravitational column lacks a unidirectional flow component, it is 
not very well suited to the separation of multicomponent mixtures but is 
largely limited to binary systems. A review of the applications of the 
thermogravitational method has recently been published (11). 

In this paper we demonstrate the combination of the thermogravita- 
tional method with field-flow fractionation. Basically, this is achieved by 
turning a thermal FFF channel on end so that its axis is vertical. One 
then gets the convective flow of the thermogravitational system super- 
imposed on the forced flow of FFF. The unidirectional nature of the forced 
flow makes possible a continual elution of solute peaks and thus the separa- 
tion of multicomponent mixtures. 

While the addition of forced flow provides an obvious advance in 
versatility over the purely convective flow of the thermogravitational 
column, it is less obvious how convective flow contributes to the normal 
efficacy of forced flow thermal FFF. While this matter will be discussed 
in more detail later, we present here one important advantage of thermo- 
gravitational FFF over thermal FFF. We note first that separation in all 
forms of FFF is intricately involved with the flow profile in the channel. 
Unfortunately, these profiles are subject to little control or variation. 
In the usual (ribbonlike) parallel plate channels the profile is normally 
parabolic, although small deviations from this are experienced as a result 
of changes in viscosity with temperature over the channel width in thermal 
FFF. However, in thermogravitational FFF the flow profile is the sum 
of two quite unlike component profiles whose relative contributions can 
be varied as desired. Thus the thermogravitational FFF column provides 
a means of gaining some control over flow profiles in FFF methodology, 
thereby potentially improving separations. We will discuss some detailed 
aspects of this new measure of control in subsequent sections of this paper. 

THEORY 

Channel Velocity Profile 

In slow laminar fluid motion, flow velocities are linear in the forces 
inducing the flow. When forces are doubled, the velocity at each point 
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614 GIDDINGS, MARTIN, AND MYERS 

likewise doubles. Because forces are additive, two or more different sets 
of forces acting on a fluid will yield a flow profile equal to the sum of 
the individual profiles for the force sets acting separately. In thermo- 
gravitational FFF, where both external pumping forces and internal 
convective forces (originating in density differences) exist simultaneously, 
the channel velocity profile is the sum of the two component profiles. 
Each of the two component flows has been analyzed extensively in studies 
of thermal FFF and thermogravitational columns, respectively. We 
consider the latter first. 

Analysis of temperature and velocity profiles in thermogravitational 
columns have been presented by Elder (12). The velocity pattern was found 
to be dependent on the Rayleigh number, A ,  

A = y'gpATW3/Kv (1) 

where y' is the coefficient of thermal expansion of the fluid, p the density, 
K the thermal diffusivity (equal to A'lpc,, A' being the thermal conductivity 
and cp the specific heat at constant pressure), 9 the viscosity, g the gravita- 
tional acceleration, and AT the temperature difference between the 
parallel plates separated by a distance w. When A is smaller than lo3, a 
stable unicellular circulation is generated and the flow is vertical through- 
out the channel except for regions within a distance on the order of w 
from the ends. Furthermore, under these conditions ( A  < lo3), the tem- 
perature profile in the channel is linear (13). 

We expect thermogravitational FFF to normally satisfy the criterion 
A < lo3. For instance, for the present study, using ethylbenzene as a 
solvent with a temperature drop of 40°C between the plates and a channel 
thickness of 0.127 mm, the Rayleigh number is calculated to be 16.7 if 
one takes for the temperature-dependent variables their values at 38 "C, 
which is the temperature at the center of the channel (14). Even if A T  
and w are both doubled, A is still well removed from lo3 and unicellular 
convection flow is expected to persist. The flow profile existing under 
these circumstances is given by the following expression in which the 
upward velocities are positive (1.5-21): 

where p is the average density in the channel and x is the distance from 
the cold wall. This profile is shown as the bottom curve in Fig. 1. 

Equation (2) is based on the assumption that y' and 9 do not depend 
on the temperature and on the variation of the composition of the liquid 
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THERMOGRAVITATIONAL FIELD-FLOW FRACTIONATION 615 
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FIG. 1.  Velocity profiles in thermogravitational FFF channels for free convec- 
tion flow (v = km), forced flow (v = 0), and various composite flows (v = 

-0.5, -1,  -2). 

in the channel. In most analytical applications of thermogravitational 
FFF, solute concentrations may be assumed so low that compositional 
variations are negligible. Temperature-dependent effects, while not always 
negligible, are generally small. The temperature dependence of y ’ ,  for 
example, is generally slight in the temperature range of FFF operation. 
However, the temperature dependence of viscosity is often larger. For 
instance, the viscosity of ethylbenzene falls roughly twofold from 20 to 
80°C. Even so, it has been shown that a change in the viscosity by a 
factor of about 2 does not significantly change the velocity profile (22). 

Equation (2) also assumes that the temperature gradient in the channel 
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616 GIDDINGS, MARTIN, A N D  MYERS 

is constant, which requires that the thermal conductivity of the solvent be 
constant. This has been shown to be a reasonable approximation (23). 

The velocity profile due to forced flow in the channel between two infinite 
parallel plates is parabolic : 

Uforced(X) = 6(u)(x/w)(l  - x/w> (3) 
where ( u )  is the average velocity in the channel. This equation is also 
based on a constant viscosity of the liquid across the channel. The per- 
turbations of the profile due to the temperature dependence of viscosity 
have been studied recently (24). As the disturbances are relatively small, 
and because we do not have similar corrections for this effect with the 
free convection profile, we shall assume that Eq. (3) provides an adequate 
description of the velocity distribution for forced flow. The form of the 
resulting parabolic profile is shown in Fig. I by the curve identified with 
v = 0. 

It is interesting to note that the positions of the two extremes of the free 
convection profile (at x / w  = l j2 ? J 5 / 6 )  are those for which the velocities 
of the forced flow profile equal the average velocity (0). 

The final flow profile in the thermogravitational FFF channel is the 
sum of the profiles expressed by Eqs. (2)  and (3): 

l J =  - 
1211 w 

Because it is desirable to have forced flow always positive in this equation 
whether its direction is up or down, parameter 6 must equal + 1 for up- 
ward flow (the normal case) and - 1 for downward forced flow. 

We can simplify Eq. (4) by defining the terms 

v1 = -6Py’gw2AT/12~ (5)  

v2 = 6 ( u )  (6) 
With these, the overall profile of Eq. (4) becomes 

2, = x(1 W - ; ) [ v l ( l  - 2) + ..I 
which, rearranged, assumes the form 

(7) 

It is convenient to introduce a dimensionless parameter, v, reflecting 
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THERMOGRAVITATIONAL FIELD-FLOW FRACTIONATION 617 

the relative importance of the free and forced component flows 

v = VJV2 (9) 

v = -6PA‘gw2AT/72q(v) (10) 

or, with Eqs. (5) and (6),  

which shows that v is positive for downward forced flow and negative for 
upward flow. With the introduction of v the velocity profile becomes 

v = 6(~)[(l + V)X /W - (1 + ~v) (x /w) ’  + ~ v ( x / w ) ~ ]  (1 1) 

By comparison with Eq. (3), it is clear that when v = 0 the flow becomes 
parabolic. 

Flow profiles expressed as v/( v) are shown for various v values in Fig. 1. 
As noted before, the flow is entirely of a forced nature when v = 0 and 
is totally free convective when IvI = 00. For the latter curve, however, 
the profile has been renormalized because v / (v>  goes to infinity. i n  this 
case we have simply plotted Eq. (2)  with (py’gw2AT/12q) = 6. 

While the composite flow profiles of Fig. 1 all correspond to negative 
v values, one can readily envision positive v values (downward forced flow) 
by turning the figure upside down, changing the sign of v for each curve, 
and exchanging the labels for hot and cold walls. 

Figure 1 and Eq. (7) show that the velocity can have a direction op- 
posite to the average velocity over limited regions for which v( 1 - 2x/w) + 
1 < 0. This local‘reversal is only possible for ]vl > 1. When a significant 
fraction of a solute is located in a velocity reversal region, one would 
expect unusual retention characteristics for this solute. Since polymers in 
a thermal field are concentrated in an exponential layer against the cold 
wall (3), such a situation can happen for upward flow of relative mag- 
nitude v < - 1. Downward flow, on the other hand, offers no unusual 
retention characteristics for polymers collecting at the cold wall. This is 
why the experiments reported here operate with upward flow. 

Retention 

The mean velocity of solute zones in all variants of FFF is 

= <cv>l(c> (12) 

where v ,  as before, is the local velocity of the carrier liquid and c the 
local concentration of solute. The ( ) brackets indicate cross-sectional 
averages. 
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618 GIDDINGS, MARTIN, A N D  MYERS 

The solute concentration profile in thermal FFF is obtained as a solu- 
tion of the following differential equation (3) : 

where a is the thermal diffusion factor of the solute. If one assumes that 
8 is constant, a direct integration of Eq. (13) yields 

c = co exp ( - x / E )  = co exp (-x/Aw) (14) 

where co is the concentration of solute at the cold wall. Quantity L rep- 
resents the mean “thickness” of the solute zone and A is a fundamental 
dimensionless parameter, ajw,  characteristic of the zone. 

The retention ratio R, which expresses the zone velocity V relative to 
the mean carrier velocity (v), is given by 

By combining Eqs. (1 I), (14), and (15), and working out the averages of 
the latter, we obtain R which, as a function of A and v, becomes 

R = 6Av(l - R,) + R, (16) 

where R, is the retention ratio obtained for parabolic flow, v = 0, and is 
given by the classical FFF equation 

R, = 6118(1/2/2) (17) 

where U ( y )  is the Langevin function 

9 ( y )  = cothy - l/y 

The contributions to R from the individual flow components can be 
distinguished in Eq. (16): R, for the forced flow and 6Av(l - R,) for the 
free convection. While R, always lies between zero and unity (2 )  whether 
or not R is greater or smaller than R, or even outside the range 0-1, it 
depends on the sign of v and the magnitude of the associated terms. Thus 
R > R, for downward flow (v positive) and R < R, for upward flow (v 
negative). The inequalities arise from the fact that the solute zone is most 
concentrated near the cold wall, and thus the perturbation of the flow due 
to free convection near this wall is crucial. For downward flow the total 
velocity near the cold wall is greater than the velocity due to parabolic 
flow alone, giving R > R,. For upward flow, as is clear from Fig. 1, 
velocity reversal occurs near the cold wall for v < - 1, and solute can 
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THERMOGRAVITATIONAL FIELD-FLOW FRACTIONATION 619 

then be carried in a direction opposite to the forced flow. In this case, 
R becomes negative. In less extreme cases R may equal zero (forming 
stationary zones), or, if positive, R < R, in all cases. 

The above features are illustrated in Fig. 2 where plots of R versus il 
are shown for different v values. These curves can be compared with the 
normal parabolic FFF curve (v = 0). 

The limiting forms of the retention expressions, Eqs. (16) through (18), 
are obtained as 

lim R = 61(1 + v) - 12i12(1 + 3v) (19) 
2 - 0  

In the special case v = -1, the two individual velocity components 
exactly cancel each other at the cold wall (see Fig. l), thus eliminating the 

1.2 I I 1 I 1 

R 

h 

FIG. 2. Retention ratio R vs A for different v values, according to Eq. (16). 
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620 GIDDINGS, MARTIN, AND MYERS 

Y 

FIG. 3. Plot of (value of I ,  for which R = 0) vs v .  

linear term in 1 from Eq. (19). We find 

lim R (v = - 1) = 2412 - 7213 (21) 
A - t O  

It must be noted that when v < - 1 ,  the limiting value of R when I - 0 
is negative. However, as I increases above zero, a limiting value is reached, 
AIim, at which R turns positive. This value is a solution of the following 
equation : 

9(1/211jm) = v/(612,imv - 1) (22) 

and is plotted against Y in Fig. 3. In the range - 3  > v > - 10, Llim is 
given within 1 % accuracy by the empirical relationship 

A1jm = -0.02784 - 0.10229~ (23) 

Column Efficiency 

There are several processes that contribute to peak broadening during 
solute migration in the FFF channel. These have been recently reviewed 
(8). All are affected in some way by the velocity distribution in the channel. 
The longitudinal molecular diffusion contribution to the plate height H 
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THERMOGRAVITATIONAL FIELD-FLOW FRACTIONATION 62 I 

is given by 

HD = 2D/R(v) (24) 

and can be estimated by using the R value in Eq. (16). However, because 
of the sluggish diffusion of polymers, this term is usually small, even for 
very low R values. Indeed, the diffusion coefficient D is approximately 
proportional to M - 0 . 5 5  where M is the molecular weight of the solute 
(23), while R from Eq. (19) varies roughly as 61(1 + v), where A is ap- 
proximately (4) 

I = (6/ATM0*’ (25) 

Therefore, R is proportional to M-0*5 .  Consequently HD is nearly in- 
dependent of M ,  and thus of R. Some exceptions to this rule occur for 
v = -1 and v c -1, but in almost all cases the contribution of HD 
remains negligible and need not be discussed further. 

The most important contribution to peak broadening in FFF originates 
in the nonequilibrium phenomenon, which is due to the fact that molecules 
in different streamlines travel at different velocities, thus upsetting the 
equilibrium concentration distribution and causing axial zone broadening. 
The contribution to H is usually expressed in one of two forms: 

HN = xw2<v>/D 

= $t2Y-/D 

where the coefficients x and $ are complicated functions of 1 and v of the 
from (25) 

II/ = 2F/R2(1 - e-’Ia 1 
x = 2A2F/R(1 - e-‘”) 

(28) 

(29) 

in which 

F = 2A[6(1 + V) - ( A  + l ) /A + 36~1’ 

- 6A(1 + 6v) + 181e-’”(I - lOvA)] 

+ 72A2[(1 + v)’ - lO(1 + 4~ + 3v2)1 

+ 4(7 + 6 9 ~  + 90v2)A2 - 672~(1 + 3v)13 + 4 4 6 4 ~ ~ 1 ~ 1  

- 7212e-’/’[(7 - 2v + v2) + 2(5 - 68v + 15v2)1 

+ 4(7 - 69v + 180v2)A2 - 672v(1 - 3v)A3 + 4464v2A4] (30) 
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622 GIDDINGS, MARTIN, AND MYERS 

and where the term A is 

A = 121e-1/L(6vA - 1)/(1 - e-”’) (31) 

In Figs. 4 and 5, I,+ is plotted versus il for positive and negative values of 
v, respectively. When v is smaller than - 1 ,  the curves approach infinity 
from both sides of the I value for which R is zero. This is physically 
reasonable because plate height, which is the ratio of peak variance to 
migration distance, is expected to approach infinity when migration ceases 
(R = 0). Similar results are expected for the x curves, which are plotted in 
Figs. 6 and 7. Here the plots are actually of 1x1, since x is negative for low 
1 values when v < - 1  because the direction of motion of the peak is 
negative. 

The limiting expressions for x and $ for high and low retention are (25) 

lim I,+ (v # -1) = 4[1 - 6(1 + 3v)il/(l + v) + 84v12/(1 + v)] (32) 
I -  0 

lim I,+ (v = - 1) = 28[1 - 6A + (36/7)i12] 
A-0 

(33) 

lim x (v # -1 )  = 24A3[(1 + v) - 8(1 + 3v)A 
I+O 

+ 12(1 + 14v + 17v2)Az/(1 + v)] (34) 

A 

FIG. 4. v/  vs 1 curves for thermogravitational FFF with downward flow. 
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\ l  

FIG. 5. ty vs R. curves for thermogravitational FFF with upward flow. 

lim x (v = - 1) = 672d4[1 - 91 + (90/7)A2] (3 5 )  

lirn x = (1/105)(1 + 3v2) (36) 

lim $ = 0 (37) 

A+O 

A+W 

A+ m 

We note that when I -, 0, F in Eqs. (28) and (29) becomes equal to the 
second of the three terms in Eq. (30). This limit is valid to better than 
2 % for 1 c 0.1. We note also that the limiting value of x for low retention 
( I  + 00) does not depend on the sign of v, which results from the fact 
that solute becomes uniformly distributed across the thickness of the 
channel and is equivalently affected by upward and downward flow. 

It is clear from Figs. 6 and 7 that when Ivl > 2, the peak broadening 
parameter x is much larger than it is for parabolic flow. This arises in 
the fact that for a given average flow, ( v ) ,  the velocity variations are more 
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624 GIDDINGS, MARTIN, AND MYERS 

h 

FIG. 6. 1x1 vs rl curves for thermogravitational FFF with IvI <2 .  

severe for a composite velocity profile than for a parabolic one. However, 
this is no longer true for solutes highly compressed near the cold wall 
because the latter will experience smaller relative velocity variations 
than they would under parabolic conditions. 

Another phenomenon contributing to peak broadening in thermo- 
gravitational FFF is the relaxation effect. This refers to the uneven dis- 
placement of solute by the channel velocity profile in the short period 
between injection and the achievement of a steady-state distribution. Its 
contribution to the plate height is affected by the velocity distribution in 
the channel and hence by the value of v. However, in the thin channel 
used in the present system, the relaxation time is very short in comparison 
with the elution time and, therefore, the relaxation effect can be neglected. 

Another important contribution to H encountered with all high resolu- 
tion systems applied to polymers is that due to polydispersity. While this 
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0 0.6 1.2 
h 

FIG. 7: 1x1 vs 1 curves for thermogravitational FFF with v I; -2. 

contribution is independent of the actual value of ( u )  (3), its analytical 
expression (8) contains the term d In R / d  In A, which depends on the form 
of R(A) and thus depends on v (Eq. 16). The magnitude of the poly- 
dispersity contribution to the plate height depends on the extent of the 
disengagement of the unequaI polymers of the sample; that is, on the 
ability of the system to separate close-lying species. As the phenomenon 
and the equations describing it are basically the same in thermogravita- 
tional FFF as in other FFF systems, we will omit detailed considerations 

Resolution and Selectivity 

or even in a chromatographic column can be expressed by (6) 
The resolution, R,, of two components migrating in an FFF channel 

R, = (JRl4)ARIR (38) 
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626 GIDDINGS, MARTIN, AND MYERS 

where N is the average number of theoretical plates for the components 
and ARiR is the relative difference in their retention ratio. For FFF 
systems this equation can be expressed in the alternate form (9) 

J R d l n R  d l n l  AM 
R =-l-ll-l- 4 dlnA d l n N  M (39)  

where AM/M is the relative difference in the molecular weights of the two 
components and Id In A/d In MI = y is a constant which according to Eq. 
(25) is 0.5 and according to some experimental evidence is closer to 0.6. 
We can write Eq. (38) in the general y-containing form without, for the 
moment, specifying whether y is closer to 0.5 or 0.6: 

R, = (yJv/4)ld In R/d In 1lAMiM (40) 

This equation shows that R, depends on two factors: column efficiency, 
which is expressed by N, and selectivity, which is given by yld In R/d In A/. 

For the thermogravitational FFF system we use Eqs. (16) through ( 1 8 )  
to obtain the selectivity term 

6vAR 1241 - 6 v l ) [  e-’” - 1 - 2  dlnl- R ‘ R  d(1 - e-l/A)z - 
d ln  R 

This term is plotted against A in Fig. 8 using different v values. The limiting 
forms of the curves can be derived from Eqs. (19) through (21). 

lim (d In R/dln A) = 1 - 241 + 3v)/(I + v),  
1-0 

for v # - 1 (42) 

lim(d1n R/dInI) = 2 - 3 5  for v = -1 
1-0 

(43) 

lim (d In R/d In A) = -(v/lOA) + (10 + 3v2)/300A2 (44) 
A-rm 

Generally the curves of Fig. 8 show a continuous decrease in selectivity 
(and thus in resolution) for increasing values of A. An exception is observed 
for positive values of v for which d In R/d In 1 goes to zero at a finite 1 
value. This arises because as I increases, R passes through a maximum 
value which exceeds unity. At the maximum, selectivity is zero. On the 
side of the maximum for which R decreases with 2,  the retention order is 
inverted and selectivity regains a finite level. 

It is instructive to compare the curves of Fig. 8 corresponding to v # 0 
with the one corresponding to parabolic flow ( v  = 0). A considerable 
enhancement in selectivity is observed for v < 0 compared to the parabolic 
case. When v < - 1 and il = Alim, which corresponds to R = 0, d ln  Rl 
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627 

FIG. 8. Plots of the selectivity term, Id In RJd In 11, as a function of 1 for differ- 
ent values of v .  
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628 GIDDINGS, MARTIN, AND MYERS 

dInA becomes infinite. This suggests that very high resolution can be 
achieved as one approaches these particular conditions. 

Figure 8 shows, more generally, that the selectivity in the case of upward 
flow can be raised to any specified value by the proper adjustment of the 
parameter v ,  since for v < - 1 every curve has a vertical asymptote. This 
is particularly interesting for low molecular weight components (high 1 
values) for which the selectivity with normal parabolic flow is poor. 

The enhanced selectivity of thermogravitational FFF is shown more 
explicitly in Fig. 9 where d log ( Vr/ Vo)/d log M is plotted against log M 
for different v values. Here V,/Vo is the retention volume divided by the 
void volume. It has been established that the resolution is related to the 
fractionating power, (lie) = M / 6 M ,  where 6 M  is the minimum increment 
in molecular weight separable at unit resolution (5). Quantity I/fl is given 

-j = 0.6 
- 
'0 

0.4 I 

I 1 I I I 

-2 

log M 

FIG. 9. Plot of selectivity, d In (V,/ Vo)/d  In M ,  vs log Mfor  thermogravitational 
FFF with upward flow. We use M = 560/A2 (see text). 
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The curves of Fig. 9 are related to those of Fig. 8 since 

Because Id In I/d In MI = y, Eq. (46) can be written 

For the plots of Fig. 9 the molecular weights are related to the A values by 
Eq. (25) with g5 = 1420°C (g/mole)''2 (7) and AT = 60°C. This gives 
M = 560/12. The figure shows clearly that high values of ldlog (Vr/Vo)/  
d log MI can be obtained by properly choosing v for molecular weights 
> -500. 

Figure 9 can also be used to compare the relative merits of thermo- 
gravitational FFF and a pressurized horizontal FFF system for separating 
low molecular weight components (6). Pressurizing the channel extends 
the liquid range of the solvent and thus allows the use of a greater AT 
and the realization of a smaller I for any given species. Consequently, the 
curve for v = 0 is shifted left, bringing increased selectivity (up to -0.5) 
to low molecular weight components. One can profitably vary AT in the 
thermogravitational system also, but by varying v one can reach selectivity 
values considerably higher than the limiting value of y - 0.5 even for the 
low molecular weight species. 

Although selectivity considerations favor thermogravitational FFF 
over normal thermal FFF, the thermogravitational system tends to be 
less efficient than normal FFF. The combined effect of these two op- 
posing influences is shown below. 

If we substitute L/H (channel length over plate height) for the number 
N of theoretical plates in Eq. (40), we get 

R, = -\i-\-i- y Z d l n R A M  
4 H d l n l  M 

With the substitution of Eq. (26) for H this becomes 

where the terms in brackets are constant for a given channel (L, w), a 
given separation problem (AMIM, D ,  y), and a given average velocity 
( v ) .  In the thermogravitational system, of course, (u> will affect v and 
thus x. The remaining terms, which include x, form the crucial resolution 
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0 0.4 a8 1.2 1.6 
h 

FIG. 10. The resolution factor, ( l /dm))ldIn R/dln 11, vs 1 for different values 
of v .  These curves show the relative variation of resolution with 1 (or molecular 

weight) with a constant flow <v>. 

factor (l/&)ld In R/d In A], which depends on the value of 1. This factor 
is plotted versus 1 in Fig. 10 for different values of v. In this figure 1x1 is 
taken instead of x to account for negative values below Alim. 

Figure 10 shows that for values of v smaller than -1, the resolution 
factor tends to infinity at a certain value of 1 despite the fact that the 
opposing terms Id In R/d In A)\ and Jm both tend to infinity. This can 
be shown by using Eq. (29): 

( 50) 
1 dInR 1 dR 1 - e- l iA dR 1 

jX ld ln1 l  &Id1 Rl =J' 2F Id;ila 
When 1 approaches Alim, R takes the form k(A - IIim) as can be seen from 
Fig. 2, so that dR/dA becomes equal to k.  In that case F tends to F,im, 
a finite value, so that the terms depending on 1 in the resolution expression 

-- =--.- 
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become 

which shows that the resolution approaches infinity as A approaches 
,Ilim. It is therefore possible by the proper adjustment of v to get high 
resolution for a specific range of A values. This confirms our previous 
conclusions, based on selectivity considerations alone, that high resolu- 
tion levels are possible in thermogravitational FFF for chosen values of A 
and thus of molecular weight. 

Unfortunately, as resolution tends to infinity, retention time f, becomes 
very high and separation is correspondingly slow. If column length L in 
Eq. (49) is replaced by tRR(u), we find the following square-root de- 
pendence of R, on t ,: 

This equation can be used to predict changes in resolution with the time 
requirement fixed; that is, t, = constant. The terms in the brackets are 
therefore again constant. The remaining factor, K = J R / X  Id In R/d In A(, 
is a function of A. In Fig. 11 we plot curves for K/K, = K(v)/K(v = 0) = 
R,(v)/R,(v = 0) versus v for different A’s. These curves simply represent 
the ratio of the resolutions obtained with thermogravitational FFF and 
normal (parabolic flow) FFF in a fixed time. The terminal points of the 
curves corresponding to A = 0.1 to 0.5 correspond to the values of v for 
which R = 0. The sharp minima in relative resolution for positive values 
of v correspond to the points in Fig. 2 where the R versus A curves have 
a maximum. At these maxima there is, of course, no differential migration 
and thus no resolution. 

Figure 11 shows that for A 2 0.5 the thermogravitational FFF system 
shows a significant improvement in resolution in a fixed time for either 
upward or downward flow, depending on the magnitude of that time. For 
example, for A = 2 the resolution is increased by a factor greater than 
3 for v < -0.6 or v > 1.4. This means that it takes 3’ (- 10) times more 
time to get a given resolution with parabolic flow than with the vertical 
system. 

Figures 10 and 11 are in basic agreement, showing that the potential 
of thermogravitational FFF lies in the fractionation of low molecular 
weight polymers (or of other components with weak thermal diffusion). 
As noted earlier, the pressurized thermal FFF system is aimed at the same 
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4 I 1 

V 

FIG. 1 1 .  Resolution relative to that for parabolic flow ( v  = 0) plotted against 
v for different A values. 

class of materials. For the latter system a given increase in AT will decrease 
A proportionally (Eq. 25). This will lead to an increase in resolution for a 
fixed time, or alternately an increase in speed for a fixed requirement on 
resolution (9). However, the two systems, pressurized and thermogravita- 
tional, are not incompatible, and it is likely that their combination will 
be beneficial in the separation of low molecular weight compounds. 

Finally, we note that the conclusions drawn from Figs. 10 and 11 on the 
basis of Eqs. (48) to (52) are based on the assumption that the non- 
equilibrium factor provides the only significant contribution to the plate 
height. Experimental systems for which this is not true will require a 
different theoretical treatment. However, nonequilibrium-limited systems 
are the most efficient from a theoretical point of view, and thus ultimately 
from a practical point of view as well. 

EXPERl MENTAL 

The thermal FFF system used in this study was described in another 
paper (9). The channel was cut from a 0.127-mm thick Mylar sheet. Its 
effective length was 41 1 mm and its breadth 20 mm. Its volume was 1.095 
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ml. The system was turned on end to create thermogravitational condi- 
tions. Upward flow was used in these experiments. 

All polymer samples but two were moderately dispersed polystyrene 
fractions (AT,/R, < 1.06) supplied by Pressure Chemical Co. The excep- 
tions were the 51,000 and 20,000 molecular weight polystyrenes of narrow 
polydispersity (R,/&T, - 1.009) obtained from Waters Associates. The 
samples were introduced as 1 to 10 pl injections of 20 to 30 m g / d  of 
polystyrene in ethylbenzene solvent. No stop-flow procedure was used 
since it was calculated that the relaxation time for all polymers was about 
10 sec (3). 

In one group of experiments the temperature drop AT between the hot 
and cold walls was 40°C and the cold wall temperature was 18°C; in 
another group AT was 80°C and the cold wall was 22.5 "C. 

RESULTS AND DISCUSSION 

We saw in the theoretical section that a change in the solvent flowrate 
in thermogravitational FFF will cause a variation in the relative im- 
portance of the forced and free convection terms which is reflected in 
coefficient v. It follows (see Eq. 16) that retention ratio R is a function 
of the imposed flow. This is illustrated in Fig. 12 where R for 110,000 
molecular weight polystyrene is plotted against solvent velocity ( 0 )  for 
upward flow at AT = 40°C and T, = 18°C. We see that as (v} is reduced 
and v consequently becomes increasingly negative, R decreases as indicated 
in Eq. (16). The form of the variation of R with (v) for this experimental 
system involving upward flow can be compared with the theoretical curves 
for different 1 values deduced from Eq. (16) and plotted in Fig. 13. (For 
completeness, the corresponding R versus velocity curves for downward 
flow are plotted in Fig. 14.) 

Figure 13 shows that R should go to zero at a finite velocity. As the 
velocity approaches this critical value, R decreases sharply. Meaningful 
experimentation in this range requires a very accurate flow control. The 
experimental results of Fig. 12 show minimal scatter down to approxi- 
mately half of the asymptotic R value, at which point the slope dR/d(v) is 
uncomfortably large. A further extension of the range toward R = 0 was 
deemed impractical. The experimental curve in Fig. 12 is similar to the plot 
corresponding to 1 = 0.10 in Fig. 13. One can check the agreement be- 
tween experimental data and the underlying expression, Eq. (16), by writing 
the latter as 

R - R, 
61(1 - R,) v =  (53) 
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0.5 

FIG. 12. Experimental R vs ( v )  plot for 110,OOO molecular weight polystyrene 
in the thermogravitational FFF system with upward flow. Temperature condi- 

tions are AT = 40°C and T, = 18°C. 

If R ,  and can be determined by measuring R, v can deduced. We stress 
that R, cannot be taken as the retention ratio, &,or, for horizontal systems. 
The difficulty is that the temperature dependence of viscosity distorts 
the flow profile of the horizontal system so that it is not parabolic. How- 
ever, the distortion is such that the profile can be approximated by the 
third degree expression of Eq. (1 1) with v values ranging from 0 to about 
-0.5 (24). If we know Rhor and the corresponding v,  vhor, we can determine 
1 through Eq. (16) and then R, through Eq. (17). For the vertical system, 
then, v in Eq. (53) represents the sum of Vhor and vVert, the latter correspond- 
ing to the v value introduced solely by free convective flow. Values for 
vhor can be calculated based on the temperature conditions of the system 
(temperature drop and cold wall temperature) and on the nature of the 
solvent. Since Vhor, R,, and A can all be determined, vVert is determined 
from the retention ratio Rvert of the vertical system using 
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1.c 

0.e 

R a6 

0.4 

0.2 

C 

I I I I , 1 
1 Upword flow 

1 

0.5 1.0 1.5 2.0 

FIG. 13. Theoretical curve of R vs ( u ) / l v l \  in thermogravitational FFF with 
upward flow for different 1 values. Asymptotic values shown at right. 

From Eqs. (6) and (9), vVert = u1/6(u).  This inverse dependence is tested 
in Fig. 15 where -vVert values calculated from Eq. (54) and the experi- 
mental data of Fig. 12 are plotted against l / (u) .  Parameters employed in 
this calculation are vhor = -0.149, R, = 0.531, and 1 = 0.1149 (Rhor = 
0.483). In spite of some scatter in Fig. 15, good agreement with the 
expected formation of a straight line is observed. A least-mean-squares 
analysis of the data gives the relationship 

-vVert = -0.02099 + 0.0810/(~) (55) 

where ( v )  is in mm/sec. Although the correlation coefficient is 0.982, the 
intercept is slightly below zero. The small deviation might mean that the 
value, -0.149, taken for Vhor is somewhat too low (too high in absolute 
value). Nonetheless, the near-zero intercept and the linearity of the plot 
provide general support for the present treatment of retention despite the 
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0.01 _-_ 
I 1 I I I , I 

21) 
0 
0 0.5 1.0 1.5 

CV> - 
IVll 

FIG. 14. Theoretical curves of R vs (v ) / lu l l  with downward flow for different 
I'S. 

neglect of the temperature dependence of viscosity for the free convective 
flow. 

The slope of the line in Fig. 15, which should equal [u,/61 according to 
Eq. 10, yields lo1 1 = 0.4857 mmlsec. This is considerably smaller than 
0.941 mmlsec, the value calculated from Eq. (5) for ethylbenzene carrier 
and the parameters AT = 40°C, y' = 1.1 x "C-l ,  w = 0.127 mm, 
p (at 38"C, the center of the channel) = 0.850 g/cm3 (27), and q (at 
38°C) = 0.524 x lo-' P (see Eq. 8 of Ref. 4) (23, 26). Part of the dif- 
ference may arise in uncertainty in the thermal expansion coefficient 
which is difficult to determine accurately. 

The principal retention and flow characteristics for polymers of dif- 
ferent molecular weights engaged in both horizontal and vertical flow 
are tabulated in Table 1. Two v , , ,~  columns are given, the theoretical values 
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I I 1 I I I I 1 I 
0 2 4 6 8 10 12 

I (seclrnrn) 

FIG. 15. Plot of -vver, values obtained from Eq. (55) and the experimental data 
of Fig. 12 vs l/(v). 

TABLE 1 

Retention and Flow Parameters for Polystyrene in Ethylbenzene Carrier with 
AT = 4 0 T ,  T, = 1 8 T ,  and vhar = -0.149 

<v> bll 
Polymer (vert) (calc) 

molecular Rhor 1 Rp L r t  v,erc vvert (mml (mml 
weight (exp) (calc) (calc) (exp) (theory) (calc) sec) sec) 

20,000 0.85 0.3497 0.886 0.657 -0.958 -0.809 0.102 0.495 
37,000 0.71 0.2124 0.756 0.503 -0.814 -0.665 0.104 0.415 

110,000 0.483 0.1149 0.531 0.245 -0.885 -0.736 0.100 0.441 
160,000 0.41 0.0933 0.455 0.181 -0.898 -0.749 0.099 0.446 

being those calculated from Eq. (16) using the stated Rhor and R, values, 
and the calculated values being those due to free convection obtained by 
subtracting the contribution of Vhor. The dispersion in the listed v,,,~ 
values may stem partly from errors in the measurement of R, although 
some deviations arise because the velocity is not equal in all cases. The 
latter is shown by the fact that the standard deviation in the values of 
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TABLE 2 

Retention and Flow Parameters for Polystyrene in Ethylbenzene Carrier with 
AT = 80°C, T, = 22.5"C, and vhor = -0.251 

<v> Iv1I 
Polymer (vert) (calc) 

molecular &or 1 RP Rvm Vvert Vvert (mm/ (mml 
weight (exp) (calc) (calc) (exp) (theory) (calc) sec) sec) 

10,300 0.750 0.264 0.821 0.482 -1.195 -0.944 0.274 1.552 
20,000 0.664 0.204 0.743 0.342 -1.275 -1.024 0.274 1.683 

0.414 -1.046 -0.795 0.345 1.646 
37,000 0.474 0.123 0.556 0.167 -1.190 -0.939 0.274 1.544 

0.247 -0.945 -0.694 0.345 1.437 
0.260 -0.905 -0.654 0.362 1.420 
0.352 -0.624 -0.373 0.540 1.209 

51,000 0.429 0.108 0.509 0.205 -0.953 -0.702 0.378 1.592 
0.306 -0.636 -0.385 0.547 1.264 

6v,,,,(u) = v l ,  shown in the last column of Table 1, is only 7.4%, which 
is less than that of v, , ,~.  Nevertheless, the average value, ] f i l l  = 0.449 
mmlsec, is well removed from the calculated one. Similar results were 
found for experiments with AT = 80°C and T, = 22.5"C (vH = -0.251). 
The results are reported in Table 2. The average value is jV,l = 1.48 mm/ 
sec with a standard deviation of 11.1 %. As before, this is much smaller 
than the value of 2.32 mmjsec calculated from Eq. (5) using the appropriate 
parameter including p (at 62.5"C) = 0.828 g/cm3 and q (at 62.5"C) = 
0.414 x lo-'. 

The plate height curve obtained for vertical flow using 110,000 molec- 
ular weight polystyrene at AT = 40°C is plotted in Fig. 16. A least- 
mean-squares analysis of these data gives 

H = 0.79 + 4.98(~) 

with a correlation coefficient of 0.961. Here (0) is in rmn/sec and H in 
mm. We note that the intercept, 0.79 mm, is at the low end of the range, 
0-4.0 mm, expected from the polydispersity contribution in the horizontal 
system assuming the supplier's polydispersity value of < 1.06 (28). For 
the vertical system the upper limit of the range should in fact be higher 
since it is proportional to (d  In R/d  In A)' (see Fig. 8). 

The data of Fig. 16 tend to form a straight line much like that generally 
observed for horizontal systems, although there is no theoretical basis for 
this in the vertical system due to changing v and x values. It is likely that 

(56) 
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01 I I I 
<v> hrnM 

0 Q4 ae 1.2 1.6 

FIG. 16. Plate height data for 110,000 molecular weight polystyrene in vertical 
channel with upward flow. Least squares line is described by Eq. (56). 

if the scatter in the data were reduced, the points would fit better to some 
nonlinear curve. It is interesting nonetheless that the slope of the line in 
Fig. 16, 4.98 sec, is only slightly higher than the slope expected for the 
horizontal configuration, 4.39 sec. 

We note finally that several polystyrene polymer mixtures have been 
separated by the thermogravitational FFF system. Examples of the 
elution profiles are shown in Figs. 17 and 18. These separations were car- 
ried out with an 80°C temperature drop between walls, the colder of which 
was 22.5"C. 

CONCLUSIONS 

We have shown here that the thermogravitational FFF system behaves 
much as predicted by theory although there are several annoying dis- 
crepancies. We have also shown that it is possible to achieve polymer 
separations such as those shown in Figs. 17 and 18. While it might be pos- 
sible, as noted in the theoretical section, to realize similar resolution with a 
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Void peak 

1 20,000 

FIG. 17. Separation of linear polystyrenes of molecular weights 20,000 and 
37,000 in thermogravitational FFF with upward flow. Conditions are AT = 

S O T ,  T, = 22.5"C, flow rate = 3.04 ml/hr, ( u )  = 0.35 mm/sec. 

Inject 

1 

FIG. 18. Separation of three polystyrene fractions of molecular weights 10,300, 
20,000, and 37,000 in thermogravitational FFF with upward flow. Conditions: 
AT = 8OoC, T, = 22.5 "C, flow rate = 2.42 ml/hr, ( v )  = 0.27 mm/sec. 
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horizontal configuration, this could not be verified because of baseline 
problems at very low flow velocities. 

The unique advantage of thermogravitational FFF is its presumed 
ability to maintain high resolution conditions into the low molecular 
weight range where horizontal systems offer little resolution. Indeed, 
since the retention of any species can be adjusted to zero by the proper 
setting of upward flow, it should be possible to begin a run at a velocity 
low enough to retain all but one of the components near the injection 
point, followed by gradual increases in flow which would elute or “desorb” 
successively higher molecular weight species of fractions. An alternate 
strategy for continuous or stepwise elution would be to maintain a fixed 
flow but gradually rotate the column from a vertical to a horizontal 
position. We note‘also that one could achieve similar ends by using 
programmed changes in the temperature drop between walls, a technique 
already used to great advantage with horizontal columns (7). 

Unique effects could also be realized with changes in column geometry. 
A tapered channel in which either width or breadth increased with height 
would lead to the formation of stationary zones which could be gradually 
bled from the system as discrete fractions. 

Clearly the thermogravitational FFF system provides a number of new 
options for polymer separations. The increased control of flow near the 
cold wall leads to the direct control of polymer migration and differentia- 
tion, and makes several new programming systems possible. In addition, 
improved retention and resolution are anticipated for low molecular 
weight materials. While this paper has barely touched on these new ap- 
proaches, it has established a theoretical framework by which results can 
be predicted and systems optimized. Hopefully this will aid in the develop- 
ment of practical techniques based on thermogravitational FFF at some 
time in the future. 
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SYMBOLS 

A Rayleigh number 
c local concentration of solute 

cp specific heat at constant pressure 
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A. 
A’ 

V 

'her 
V w r i  

solute-solvent diffusion coefficient 
term defined by Eq. (30) 
gravitational acceleration 
longitudinal molecular diffusion contribution to plate height 
nonequilibrium contribution to plate height 
plate height 
~ V X  Id In Rld In A/ 
defined by limiting form R = k(1 - Ali,) 
channel length 
molecular weight of solute 
number of theoretical plates 
retention ratio 
retention ratio for horizontal systems 
retention ratio for vertical systems 
retention ratio due to parabolic flow 
resolution of two components 
retention time 
velocity profile due to convective flow 
velocity profile due to forced flow 
average solvent velocity 
retention volume 
void volume 
channel thickness, the distance between the hot and cold walls 
distance from cold wall 

mean “thickness” of solute layer 
mean solute velocity 
Langevin function defined by Eq. (18) 

thermal diffusion factor of solute 
nonequilibrium coefficient defined by Eq. (26)  
temperature difference between the hot and cold walls 
viscosity of the solvent 
coefficient of thermal expansion 
Id In A/d In MI 
thermal diffusivity 
alw,  dimensionless layer thickness 
thermal conductivity 
flow parameter defined by Eq. (9) 
v for horizontal system 
v for vertical system 
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4 
p density of the solvent 
I) 

6 

parameter defined by Eq. (25) 

nonequilibrium coefficient defined by Eq. (27) 
parameter defined by Eq. (45) 
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